Comparative Study on Multi- Objective Genetic Algorithms for Seismic Response Controls of Structures
نویسنده
چکیده
This chapter introduces three new multi-objective genetic algorithms (MOGAs) for minimum distributions of both actuators and sensors within seismically excited large-scale civil structures such that the structural responses are also minimized. The first MOGA is developed through the integration of Implicit Redundant Representation (IRR), Genetic Algorithm (GA), and Non-dominated sorting GA 2 (NSGA2): NS2-IRR GA. The second one is proposed by combining the best features of both IRR GA and Strength Pareto Evolutionary Algorithm (SPEA2): SP2-IRR GA. Lastly, Gene Manipulation GA (GMGA) is developed based on novel recombination and mutation mechanism. To demonstrate the effectiveness of the proposed three algorithms, two full-scale twenty-story buildings under seismic excitations are investigated. The performances of the three new algorithms are compared with the ones of the ASCE benchmark control system while the uncontrolled structural responses are used as a baseline. It is shown that the performances of the proposed algorithms are slightly better than those of the benchmark control system. In addition, GMGA outperforms the other genetic algorithms.
منابع مشابه
PERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal push...
متن کاملMulti-objective Optimization of Semi-active Control of Seismically Exited Buildings Using Variable Damper and Genetic Algorithms
Semi-active fluid viscous dampers as a subset of control systems have shown their ability to reduce seismic responses of tall buildings. In this paper, multi-objective optimization of the performance of this group of dampers in reducing the seismic responses of buildings is studied using multi-objective genetic algorithms. For numerical example, two 7 and 18 stories buildings are chosen and mod...
متن کاملSEMI-ACTIVE NEURO-CONTROL FOR MINIMIZING SEISMIC RESPONSE OF BENCHMARK STRUCTURES
This article presents numerical studies on semi-active seismic response control of structures equipped with Magneto-Rheological (MR) dampers. A multi-layer artificial neural network (ANN) was employed to mitigate the influence of time delay, This ANN was trained using data from the El-Centro earthquake. The inputs of ANN are the seismic responses of the structure in the current step, and the ou...
متن کاملA comparative study on pile group and piled raft foundations (PRF) behavior under seismic loading
Study on the seismic behavior of piled rafts and pile groups while the same amount of construction material and excavation is used in their construction, are the main objective of this research. The process where the raft interaction with soil can affect the seismic response and stress distribution is also discussed in the current study. By means, ABAQUS software was applied for the finite elem...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کامل